

Outcomes Measure: Acute Kidney Injury (AKI) 01

Measure Abbreviation: AKI 01

Measure Description: Percentage of cases that the baseline creatinine does not increase more than 1.5 times within 7 days post-op or the baseline creatinine level does not increase by ≥ 0.3 mg/dL within 48 hours post-op.

NQS Domain: Effective Clinical Care

Measure Type: Outcome

Measure Summary: AKI 01 identifies when a patient has an increase in their baseline creatinine observed in the first 7 post –op days. More specifically, it identifies when there is an increase of 1.5 x baseline serum creatinine (measured within 60 preoperative days) observed in first 7 post-op days or when the baseline creatinine increases ≥ 0.3 mg/dl in 48 hours from Anesthesia end. (Use the lab draw closest to the date of surgery for baseline preop creatinine value).

Inclusions: All anesthetic cases

Exclusions:

- ASA 5 & 6
- Patients with pre-existing renal (stage 4 or 5) failure based upon EGFR < 30 mL/min/1.73 m²
- Patients undergoing procedures affecting kidneys
 - Urologic surgery on kidney/ureter CPT 00862, 00864, 00870, 00872, 00873, 00865, 00908, 00910, 00912, 00914, 00916, 00918, 00860, 00942
 - Renal Transplants CPT 00868
- Non-Operative Procedures:
 - o Obstetric Non-Operative Procedures CPT 01958, 01960, 01967
 - Pain Procedures *CPT 01991, 01992, 01996*
 - Electroconvulsive Therapy CPT 00104
- Patients where a creatinine lab is not available within 7 days post-op
- Patients that do not have a baseline creatinine 60 preoperative days
- For patients with more than one case in a 7 day period, the first case will be excluded if there is no
 postop creatinine documented for that first case. For example, a patient that has surgery twice in a
 7 day period, the surgery that occurred first is excluded if there is no creatinine drawn in between
 cases.
- The surgical duration is less than 30 minutes
- The anesthesia duration is less than 45 minutes

Other Measure Build Details:

Method for calculating EGFR dependent on age and availability of patient race data:

- Adult patients (>18 years), race data available: CKD-EPI formula ⁹
- Adult patients (>18 years), race data unavailable: Cockcroft-Gault formula ⁹
- Pediatric patients (≤ 18 years): *Bedside Schwartz* formula ¹⁰; if height is missing, see adult algorithm for EGFR calculation.

Success:

- 1. The creatinine level does not increase above 1.5x the baseline creatinine within 7 days post-op
- 2. The creatinine level does not increase by \geq 0.3 mg/dL obtained within 48 hours post-op (anesthesia end).

Threshold: 90% success.

Responsible Provider:

- 1. The provider signed in during the case when the BP 01 measure failed (it is possible to have more than one provider).
- 2. If there is no failure for the BP 01 measure, then the responsible provider is the provider signed in the longest.

Risk Adjustment (for outcome measures):

To evaluate provider-level risk adjustment we will calculate the observed to expected outcomes ratio (O/E). The O/E is calculated using a logistic regression model and predicts (given a set list of dependent patient and hospital level variables) the expected probability of having a kidney injury. We adjust for surgery risk score, emergent procedures, ASA, gender, age, body mass index, laboratory values, and teaching versus private hospital. Patient specific comorbidities are evaluated as well.

References:

- 1. Abelha FJ, Botelho M, Fernandes V, Barros H. Determinants of postoperative acute kidney injury. *Critical care (London, England).* 2009;13(3):R79.
- Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. *Critical care (London, England)*. Aug 2004;8(4):R204-212.
- 3. Biteker M, Dayan A, Tekkesin AI, et al. Incidence, risk factors, and outcomes of perioperative acute kidney injury in noncardiac and nonvascular surgery. *American journal of surgery*. Jan 2014;207(1):53-59.
- Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. Nov 2005;16(11):3365-3370.
- 5. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). *Critical care (London, England)*. 2013;17(1):204.
- Kheterpal S, Tremper KK, Englesbe MJ, et al. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. *Anesthesiology*. Dec 2007;107(6):892-902.
- Kheterpal S, Tremper KK, Heung M, et al. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. *Anesthesiology.* Mar 2009;110(3):505-515.2.
- 8. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. *Critical care (London, England)*. 2007;11(2):R31.
- Michaels WM, Grootendorst D.C., Verduijn M, Elliott EG, Dekker FW, Krediet RT; Performance of the Cockroft-Gault, MDRD and New CKD-Epi Formulas in Relation to GFR, Age and Body size, Clin J Am Soc Nephrol 5: 1003-1009, 2010
- Schwartz GJ and Work DF. Measurement and estimation of GFR in children and adolescents. J Am Soc Nephrol. 2009; Nov; 4(11):1832-643.
- 11. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. *Anesthesiology*. Sep 2015;123(3):515-523.
- 12. Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. *Critical care medicine*. Sep 2009;37(9):2552-2558.
- 13. Xue JL, Daniels F, Star RA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. *J Am Soc Nephrol.* Apr 2006;17(4):1135-1142.